函数,,其中,则 ( )
A.均为偶函数 B.均为奇函数
C.为偶函数,为奇函数 D.为奇函数,为偶函数
函数的定义域是 ( )
A. B. C. D.
全集, 集合,,则 ( )
A. B.
C. D.
(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,
2Sn=an an+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由;
(2)设,,
若r>c>4,求证:对于一切n∈N*,不等式恒成立.
(本小题满分14分)已知函数,,为常数.
(1) 求函数的定义域;
(2) 若时,对于,比较与的大小;
(3) 讨论方程解的个数.
(本题满分14分)给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的伴随圆相交于M、N两
点,求弦MN的长;
(3)点是椭圆的伴随圆上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.