.实数、满足,集合,,则集合可表示为 ( )
A. B. C. D.
(本小题满分14分)已知函数,是常数.
(Ⅰ) 证明曲线在点的切线经过轴上一个定点;
(Ⅱ) 若对恒成立,求的取值范围;
(参考公式:)
(Ⅲ)讨论函数的单调区间.
(本小题满分14分)
已知函数,数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)求;
(Ⅲ)求证:
(本小题满分14分)已知椭圆以 为焦点,且离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。
(Ⅲ)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
(本小题满分14分)如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.
(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.
(本小题满分12分)某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0. 19.
(Ⅰ)求的值;
(Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?
(Ⅲ)已知,求高三年级中女生比男生多的概率.