四、选考题:(本小题满分10分)
请考生在第22、23、题中任选一题做答,如果多做,则按所做的第一题记分.
22.选修4-4:坐标系与参数方程
已知圆O1和圆O2的极坐标方程分别为
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程。
(本小题满分12分)
已知函数f(x)=alnx,(a∈R)g(x)=x2,记F(x)=g(x)-f(x)
(Ⅰ)判断F(x)的单调性;
(Ⅱ)当a≥时,若x≥1,求证:g(x-1)≥f();
(Ⅲ)若F(x)的极值为,问是否存在实数k,使方程g(x)-f(1+x2)=k有四个不同实数根?若存在,求出实数k的取值范围;若不存在,请说明理由。
(本小题满分12分)
设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点,关于直线的对称点为,求的取值范围.
.(本小题满分12分)
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。
.(本小题满分12分)
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点。
(1)证明:SO⊥平面ABC;
(2)求二面角A-SC-B的余弦值.
(本小题满分12分)
已知向量=(sin2x,cosx),=(,2cosx)(x∈R),f(x)=
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=,B=,求b的值。