(本题满分14分)
已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:.
⑴ 求椭圆的标准方程;
⑵ 设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
(本题满分14分)
甲打靶射击,有4发子弹,其中有一发是空弹.
(1)求空弹出现在第一枪的概率;
(2)求空弹出现在前三枪的概率;
(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔,第四枪瞄准了三角形射击,第四个弹孔落在三角形内,求第四个弹孔与前三个弹孔的距离都超过1的概率(忽略弹孔大小).
当为正整数时,函数表示的最大奇因数,如,
设,则 ▲ .
.已知实数满足,则的最大值为 ▲ .
如果圆上总存在两个点到原点的距离为1,则实数的取值范围
是 ▲ .