如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的
半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,
上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆
关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程
已知函数.
(1)设,且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.
如图,平面平面,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO
的中点,,.求证:
(1)平面;
(2)∥平面.
在平面直角坐标系xOy中,设A、B、C是圆x2+y2=1上相异三点,若存在正实数,使得
=,则的取值范围是 ▲
.若实数x,y,z,t满足,则的最小值为 ▲