已知数列满足.
(1)求数列的通项公式;
(2)对任意给定的,是否存在()使成等差数列?若存
在,用分别表示和(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
设定义在区间[x1, x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向
量=,,=(x,y),当实数λ满足x=λ x1+(1-λ) x2时,记向
量=λ+(1-λ).定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指
“k恒成立”,其中k是一个确定的正数.
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数在区间上可在标准k=下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的
半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,
上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆
关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程
已知函数.
(1)设,且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.
如图,平面平面,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO
的中点,,.求证:
(1)平面;
(2)∥平面.