(本小题共16分)
已知数列各项均不为0,其前项和为,且对任意都有 (为大于1的常数),记f(n).
(1)求;
(2)试比较与的大小();
(3)求证:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*)
(本小题共16分)
已知M(p, q)为直线x+y-m=0与曲线y=-的交点,且p<q,若f(x)=,λ、μ为正实数。求证:|f()-f()|<|p-q|
(本小题共16分)
已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.
(1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值范围;
(2)设直线与轴、轴分别交于点,,求证:为定值.
((本小题满分14分)
如图:设工地有一个吊臂长的吊车,吊车底座高,现准备把一个底半径为高的圆柱形工件吊起平放到高的桥墩上,问能否将工件吊到桥墩上?(参考数据:)
(本小题满分14分)
如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.
(1)求证:平面;
(2)设的中点为,求证:平面;
(3)设平面将几何体分成的两个锥体的体积分别为,,
求
(本小题满分14分)
在△ABC中,分别为角A、B、C的对边,,=3, △ABC的面积为6
⑴求角A的正弦值;
⑵求边b、c;