已知复数z=3-4i,则复数z的实部和虚部之和为_____________
α是第一象限角,,则____________
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形, AC=2,DC=DB=,
(1)求DC与AB所成角的余弦值;
(2)在平面ABD上求一点P,使得CP⊥平面AB D.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.
(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的半⊙O交于点,延长交于.
(1)求证:是的中点;(2)求线段的长.
B.选修4-2:矩阵与变换
已知矩阵A,其中,若点在矩阵A的变换下得到.
(1)求实数的值;
(2)矩阵A的特征值和特征向量.
C. 选修4-4:坐标系与参数方程
在极坐标系中,圆的极坐标方程为,
(1)过极点的一条直线与圆相交于,A两点,且∠,求的长.
(2)求过圆上一点,且与圆相切的直线的极坐标方程;
D.选修4-5:不等式选讲
已知实数满足,求的最小值;
(本小题共16分)
已知数列各项均不为0,其前项和为,且对任意都有 (为大于1的常数),记f(n).
(1)求;
(2)试比较与的大小();
(3)求证:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*)