(本小题满分为12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了名学生。调査结果表明:在爱看课外书的人中有人作文水平好,另人作文水平一般;在不爱看课外书的人中有人作文水平好,另人作文水平一般.
(Ⅰ)试根据以上数据建立一个列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为,某名爱看课外书且作文水平一般的学生也分别编号为,从这两组学生中各任选人进行学习交流,求被选取的两名学生的编号之和为的倍数或的倍数的概率.
附:
临界值表:
0. 10 |
0. 05 |
0. 025 |
0.010 |
0. 005 |
0. 001 |
|
2. 706 |
3. 841 |
5. 024 |
6. 635 |
7. 879 |
10. 828 |
解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。)
16.(本小题满分为12分)
已知函数和.
(Ⅰ)设是的极大值点,是的极小值点,求的最小值;
(Ⅱ)若,且,求的值.
不等式的解集是 .
设,其中或(,),并记,对于给定的,构造数列如下:
,,若,则 (用数字作答).
已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M与球O的表面积相等,则它们的体积之比= (用数值作答).
已知角的顶点在坐标原点,始边与x轴的正半轴重合,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则= .