17.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
|
优秀 |
非优秀 |
总计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
105 |
已知在全部105人中抽到随机抽取2人为优秀的概率为
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
(3)若按下面的方法从甲班优秀的学生抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取的人的序号,试求抽到6或10的概率。
已知,其中向量
(1)求的最小正周期和最小值;
(2)在中,角A、B、C的对边分别为a、b、c,若求边长
c的值。
已知两条直线m,n,两个平面α,β,给出下面四个命题:
① ②
③; ④ 其中正确命题的序号是 。
连续掷两次骰子分别得到的点数为m,n,则点P(m,n)在直线左下方的概率为 。
不等式的解集是 。
若数列满足:,其前n项和为,则= 。