已知复数( )
A.2 B.-2 C. D.
(本小题满分14分)设函数f(x) = x2 + bln(x+1),
(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;
(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;
(3)若b = -1,,证明对任意的正整数n,不等式都成立
(本小题满分13分)椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.
(1)求椭圆方程;
(2)若,求m的取值范围.
(本小题满分12分)正方体的棱长为,是与的交点,是上一点,且.
(1)求证:平面; (2)求异面直线与所成角的余弦值;
(3)求直线与平面所成角的正弦值.
(本小题满分12分)如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱。
(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米量,可使总造价最低?
(本小题满分12分)已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.
(1) 求数列,的通项公式;
(2) 记,求证:.