(本小题满分12分)
已知定义在正实数集上的函数
,其中
。设两曲线
有公共点,且在公共点处的切线相同。
(1)若
,求
的值; (2)用
表示
,并求
的最大值。
(本小题满分12分)
甲乙两个奥运会主办城市之间有7条网线并联,这7条网线能通过的信息量分别为l,1,2,2,2,3,3,现从中任选三条网线,设可通过的信息量为X,当可通过的信息量X≥6,则可保证信息通畅.
(1)求线路信息通畅的概率;
(2)求线路可通过的信息量X的分布列及期望。
(本小题满分12分)
如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点,
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD;
(3)求锐二面角B—PD—C的余弦值.

(本小题满分12分)
设向量
,
,且
.
(1)求
;
(2)求
.
设
:方程
有两个不相等的正根;
:方程
无实根.则使
为真,
为假的实数
的取值范围是
已知双曲线
的一条渐近线方程为
,则该双曲线的离心率
为
.
