如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
已知函数在处取得的极小值是.
(1)求的单调递增区间;
(2)若时,有恒成立,求实数的取值范围.
(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD
(1)求证:BF∥平面ACE;
(2)求二面角B-AF-C的大小;
(3)求点F到平面ACE的距离.
设角是的三个内角,已知向量,
,且.
(Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.
给出下列四个结论: ①当a为任意实数时,直线恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是;
②已知双曲线的右焦点为(5,0),一条渐近线方程为,则双曲线的标准方程是;
③抛物线;
④已知双曲线,其离心率,则m的取值范围是(-12,0)。
其中为真命题的是
当实数满足约束条件(其中为小于零的常数)时,的最小值为,则实数的值是 .