如图,在四棱锥中,,,且DB平分,E为PC的中点,,
(Ⅰ)证明;
(Ⅱ)证明;
(Ⅲ)求直线BC与平面PBD所成的角的正切值
等差数列{an }中,=30,=15,求使an≤0的最小自然数n.
△ABC中,角A,B,C对边的边长分别是a,b,c,且a(cosB+cosC)=b+c.
(1)求证:A=;
(2)若△ABC外接圆半径为1,求△ABC周长的取值范围.
一个正三棱柱恰好有一个内切球(球与三棱柱的两个底面和三个侧面都相切)和一个外接球(球经过三棱柱的6个顶点),则此内切球与外接球表面积之比为 .
已知实数.满足方程,当()时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.
给出下列四个命题:
⑴ 过平面外一点,作与该平面成)角的直线一定有无穷多条;
⑵ 一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
⑶ 对确定的两条异面直线,过空间任意一点有且只有唯一的一个平面与这两条异面直线都平行;
⑷ 对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;
其中真命题的序号是 (写出所有正确命题的序号).