(本小题满分12分)
已知函数
(I)当a=1时,求的最小值;
(II)求证:在区间(0,1)单调递减。
(本小题满分12分)
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。
(I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C—BE—D的余弦值。
(本小题满分12分)
口袋中有6个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,3个小球标有数字“1”,每次从中任取一个小球,取后放回,连续抽取两次。
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为,求的分布列和期望。
(本小题满分10分)7.
在中,角A、B、C的对边分别为a、b、c,已知,
,求b边的长。
在平行四边形ABCD中,E、F分别为AB、BC的中点,记三边及内部组成的区域为,
,当点P在上运动时,的最大值为 。
某区教育部门欲派5名工作人员到3所学校进行地震安全教育,每所学校至少派1人,至多派2人,则不同的安排方案共有 种(用数字作答)