(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.
(本小题满分12分)
已知等比数列中,.
(Ⅰ)若为等差数列,且满足,求数列的通项公式;
(Ⅱ)若数列满足,求数列的前项和.
随机地向区域内内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角小于的概率为_________________.
过抛物线的焦点作倾斜角为的直线,与抛物线分别交于两点(点在轴的左侧),则_______________.
一个几何体的三视图如图所示,则该几何体
的表面积为__________________.
双曲线的焦点坐标是____________