已知为实数集,,则= ( )
A. B. C. D.
.(本小题满分12分)
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
求证:(1)
(2)AC2=AE·AF。
.(本小题满分12分)
已知椭圆与双曲线有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线,与椭圆交于不同的两点A、B,点Q满足?若存在,求出的取值范围;若不存在,说明理由。
(本小题满分12分)
设函数
(I)若函数处的切线为直线相切,求a的值;
(II)当时,求函数的单调区间。
本小题满分12分
如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=。
(I)求证:A1B⊥B1C;
(II)求二面角A1—B1C—B的大小。
(本小题满分12分)
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在
[140,150]
频数
1
2
9
8
10
10
y
3
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
|
甲校 |
乙校 |
总计 |
优秀 |
|
|
|
非优秀 |
|
|
|
总计 |
|
|
|
附:
0.10 |
0.025 |
0.010 |
|
2.706 |
5.024 |
6.635 |