设是三条不同的直线,是两个不同的平面,则的一个充分条件为( )
A. B.
C. D.
设函数 若,则=( )
A.– 3 B.±3 C.– 1 D.±1
(本题满分15分)
已知偶函数满足:当时,,当时,
(1) 求当时,的表达式;
(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。
(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
(本题满分15分)已知函数
(1) 求函数的最小值
求证:当时,
(本题满分14分)
已知函数,,其图象过点
(1) 求的解析式,并求对称中心
(2) 将函数的图象上各点纵坐标不变,横坐标扩大为原来的2倍,然后各点横坐标不变,纵坐标扩大为原来的2倍,得到的图象,求函数在上的最大值和最小值.
(本题满分14分)在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC=14,DC=6,求AD的长.