将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 ( )
(A) (B)
(C) (D)
过点(1,1)且与直线x-2y-2=0平行的直线方程是 ( )
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
若集合,则C ( )
(A) (B) (C) (D)
(本题满分16分)
已知函数
(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;
(Ⅱ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,直线的斜率为,有成立?若存在,请求出的值;若不存在,请说明理由.
.(本题满分14分)
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 设过点的直线交椭圆于、两点,若,求直线的斜率的取值范围.
(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
(Ⅰ) 设二面角E – AC – D1的大小为q,若£ q £ ,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.