曲线在处的切线平行于直线,则点的坐标为( )
A.( 1 , 0 ) B.( 2 , 8 ) C.( 1 , 0 )和(-1, -4) D.( 2 , 8 )和 (-1, -4)
函数的定义域是( )
A. B. C . D.
已知集合, 则=( )
A.{3,5} B.{3,6} C.{3,7} D.{3,9}
(14分)设函数f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围;
(2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0),
证明:F(n)≥n(a-b)(n-b)n-2。
(13分)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点
(1)当A点坐标为(8,4)时,求直线EF的方程;
(2)当A点坐标为(2,2)时,求直线MN的方程;
(3)当A点的横坐标大于2时,求△ABC面积的最小值。
(12分)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;
(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。