已知α,β是两个不同的平面,m,n是两条不同的直线,又知α∩β=m,且n⊄α,n⊄β,则“n∥m”是“n∥α且n∥β”的
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
已知函数f(x)=sin(2x-),若存在α∈(0,π),使得f(x+α)=f(x+3α)恒成立,则α的值是
A. B. C. D.
若M={x||x-1|<2},N={x|x(x-3)<0},则M∩N=
A.{x|0<x<3} B.{x|-1<x<2} C.{x|-1<x<3} D.{x|-1<x<0}
已知函数(),且.
(Ⅰ)试用含有的式子表示,并求的极值;
(Ⅱ)对于函数图象上的不同两点,,如果在函数图象上存在点(其中),使得点处的切线,则称存在“伴随切线”. 特别地,当时,又称存在“中值伴随切线”. 试问:在函数的图象上是否存在两点、使得它存在“中值伴随切线”,若存在,求出、的坐标,若不存在,说明理由.
(本小题满分13分)
某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘. 根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼(万条).
(I)设第年年初该鱼塘的鱼总量为(年初已放入新鱼(万条),2010年为第一年),求及与间的关系;
(Ⅱ)当时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条).
(本小题满分13分)
已知,函数,, .
(I)求函数的单调递减区间;
(Ⅱ)若在区间上至少存在一个实数,使成立,试求正实数的取值范围.