设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为
A. B. C. D.
设函数的最大值为3,则f(x)的图象的一条对称轴的方程是
A. B. C. D.
设(是虚数单位),则
A. B. C. D.
(本小题满分14分)
已知函数.
(1)若,曲线和在原点处的切线重合,求实数的值.
(2)若,在上恒成立,求的取值范围.
(3)函数,在上函数图象与直线y=1是否有交点?若有,求出交点,若没有,请说明理由.
(本小题满分12分)
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(本小题满分12分)
曲线是以原点为中心,以抛物线的焦点F为右焦点,离心率为的椭圆,且过F的直线交椭圆C于P、Q两点,M是中点.
(1)求椭圆C的方程;
(2)当时,求直线PQ的方程.