(本小题满分14分)
已知圆:,点,,点在圆上运动,的垂直平分线交于点.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率;
(Ⅲ)过点,且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
(本小题满分12分)
已知函数.
(Ⅰ)当时,求函数在,上的最大值、最小值;
(Ⅱ)令,若在,上单调递增,求实数 的取值范围.
(本小题满分12分)
已知数列满足,且,为的前项和.
(Ⅰ)求证:数列是等比数列,并求的通项公式;
(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
.(本小题满分12分)
某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
休假次数 |
||||
人数 |
根据上表信息解答以下问题:
(Ⅰ)从该单位任选两名职工,用表示这两人休年假次数之和,记“函数在区间,上有且只有一个零点”为事件,求事件发生的概率;
(Ⅱ)从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量 的分布列及数学期望.
(本小题满分12分)
如图,为矩形,为梯形,平面平面,,,.
(Ⅰ)若为中点,求证:平面;
(Ⅱ)求平面与所成锐二面角的余弦值.
(本小题满分12分)
已知向量,,向量,,函数.
(Ⅰ)求的最小正周期;
(Ⅱ)已知,,分别为内角,,的对边,为锐角,,,且恰是在,上的最大值,求,和的面积.