某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正
确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数的数学期望.
如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,
E、F分别为棱BC、AD的中点.
(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值.
(Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
如图,正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.
如图,四面体的三条棱两两垂直,,,
为四面体外一点.给出下列命题.
①不存在点,使四面体有三个面是直角三角形;
②不存在点,使四面体是正三棱锥;
③存在点,使与垂直并且相等;
④存在无数个点,使点在四面体的外接球面上.
其中真命题的序号是 .
若等差数列的首项为公差为,前项的和为,则数列为等差数列,且通项为.类似地,请完成下列命题:若各项均为正数的等比数列的首项为,公比为,前项的积为,则 .
下图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图甲中从左向右第一组的频数为4000.在样本中记月收入在,,的人数依次为、、……、.图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,图乙输出的 .(用数字作答)