若集合中元素个数为
A. 0 B. 1 C. 2 D. 3
已知函数.
(Ⅰ)若不等式的解集为,求实数的值;
(Ⅱ)在(Ⅰ)的条件下,若+对一切实数恒成立,求实数的取值范围.
平面直角坐标系中,将曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线 .以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求和公共弦的长度.
(本小题满分10分)选修4-1:几何证明选讲
如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.
求证:(Ⅰ);
(Ⅱ).
已知函数在点处的切线方程为
(Ⅰ)求的表达式;
(Ⅱ)若满足恒成立,则称的一个“上界函数”,如果
函数为(为实数)的一个“上界函数”,求的取值范围;
(Ⅲ)当时,讨论在区间(0,2)上极值点的个数.
已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(Ⅰ)求M点的轨迹T的方程;
(Ⅱ)已知、,试探究是否存在这样的点:是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.