如图,在四棱锥P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E为棱PC上异于C的一点,DE⊥BE
(1)证明:E为PC的中点;
(2)求二面角P—DE—A的大小
已知△ABC的内角A、B、C的对边分别为a、b、c,若求角A
已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=120°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于
已知P是双曲线上的动点,F1、F2分别是双曲线的左、右焦点,M是∠F1PF2的平分线上的一点,且,O为坐标原点,则|OM|=
已知的展开式中的系数为,则常数a的值为
设全集,则集合B=