某学校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人,为了研究血型与色弱之间的关系,用分层抽样的方法抽取一个容量为40的样本,则在血型为O型的学生中应抽取 人。
已知为虚数单位),则= .
记函数的定义域为A,则中有 个元素。
某校组织一次篮球投篮测试,已知甲同学每次投篮的命中率均为1/2。
(1)若规定每投进1球得2分,甲同学投篮4次,求总得分X的概率分布和数学期望。
(2)假设连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次,被停止投篮测试的概率是多少?
正三棱柱ABC-A1B1C1中,AB=2,AA1=1,D为A1C1的中点,线段B1C上的点M满足B1M=λB1C,若向量AD与BM的夹角小于45º,求实数λ的取值范围
在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字说明、证明过程或演算步骤。
A、选修4-1:几何证明选讲
如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。
B、选修4-2:矩形与变换
已知 为矩阵属于λ的一个特征向量,求实数a,λ的值及A2。
C、选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C的参数方程为(α为参数),曲线D的参数方程为,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。
D、选修4-5:不等式选讲
已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。