(本小题满分10分)
如图,在底面边长为1,侧棱长为2的正四棱柱
中,P是侧棱
上的一点,
. (1)试确定m,使直线AP与平面BDD1B1所成角为60º;(2)在线段
上是否存在一个定点
,使得对任意的m,
⊥AP,并证明你的结论.

(本小题满分10分)
过点
且倾斜角为
的直线和曲线
(
为参数)相交于
两点.求线段
的长.
本小题满分10分)
已知矩阵![]()
,其中
,若点
在矩阵
的变换下得到点
(1)求实数a的值;(2)求矩阵
的特征值及其对应的特征向量.
(本小题满分16分)
已知数列
满足
,(1)若
,求
;
(2)是否存在
,使当
时,
恒为常数。若存在求
,否则说明理由;
(3)若
,求
的前
项的和
(用
表示)
本小题满分16分)
如图,已知圆![]()
是椭圆
的内接△
的内切圆, 其中
为椭圆的左顶点.

(1)求圆
的半径
;
(2)过点
作圆
的两条切线交椭圆于
两点,
|
(本小题满分15分)
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧
上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在
的中点时,对城A和城B的总影响度为0.065.

(1)将y表示成x的函数;
(11)讨论(1)中函数的单调性,并判断弧
上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
