(本题满分16分)
已知圆,点,直线.
⑴求与圆相切,且与直线垂直的直线方程;
⑵在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
如图,灌溉渠的横截面是等腰梯形,底宽2米,边坡的长为x米、倾角为锐角.
(1)当且灌溉渠的横截面面积大于8平方米时,求x的最小正整数值;
(2)当x=2时,试求灌溉渠的横截面面积的最大值.
(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅲ)求证CE∥平面PAB.
(本题14分)已知为坐标原点,,.
(Ⅰ)求的单调递增区间;
(Ⅱ)若的定义域为,值域为,求的值.
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解。
其中真命题的个数是_________个。
已知函数是定义在上的单调增函数,当时,,若,则f(5)的值等于 .