15.(本小题满分14分)
已知函数f(x)=sin2x+sinxcosx-(xÎR).
(1)若xÎ(0,),求f(x)的最大值;
(2)在△ABC中,若A<B,f(A)=f(B)=,求的值.
在直角坐标系xOy中,点P(xP,yP)和点Q(xQ,yQ)满足,按此规则由点P得到点Q,称为直角坐标平面的一个“点变换”.此变换下,若=m,∠POQ=q,其中O为坐标原点,则y=msin(x+q)的图象在y轴右边第一个最高点的坐标为 ▲ .
平面四边形ABCD中,AB=,AD=DC=CB=1,△ABD和△BCD的面积分别为S,T,则S2+T2的最大值是 ▲ .
定义在R上的函数f(x)的图象过点M(-6,2)和N(2,-6),对任意正实数k,有f(x+k)<f(x)成立,则当不等式| f(x-t)+2|<4的解集为(-4,4)时,实数t的值为 ▲ .
已知A={x|1≤x≤2},B={x|x2+2x+a≥0},A,B的交集不是空集,则实数a的取值范围是 ▲ .
已知等差数列{an}和{bn}的前n项和分别为Sn,Tn,且=对任意nÎN*恒成立,则的值为 ▲