在平面直角坐标系xoy中,已知定点A(-4,0),B(4,0),动点P与A、B连线低斜率之积为。
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为。
(Ⅰ)求圆M的方程;
(Ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如
果不存在,说明理由。
2014年青奥会水上运动项目将在J地举行,截止2010年底,投资集团B在J地共投资100万元
用于地产和水上运动项目的开发。经调研,从2011年初到2014年底的四年间,B集团预期可从三个方面获得利润:一是房地产项目,四年获得的利润的值为该项目投资额(单位:百万元)的20%;二是水上运动项目,四年获得的利润的值为该项目投资额(单位:百万元)的算术平方根;三是旅游业,四年可获得利润10百万元。
(1)B集团的投资应如何分配,才能使这四年总的预期利润最大?
(2)假设2012年起,J地政府每年都要向B集团征收资源占用费,2012年征收2百万元后,以后每年征收的金额比上一年增加10%,若B集团投资成功的标准是:从2011年初到2014年底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于投资额的18%,问B集团投资是否成功?
如图,在矩形ABCD中,AD=2,AB=4,E、F分别为边AB、AD的中点,现将△ADE沿DE
折起,得四棱锥A—BCDE.
(1)求证:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面体FDCE的体积。
已知a,b,c分别为△ABC的三内角A,B,C的对边,且
求角B的大小;(2)求sinA+sinC的取值范围。
如图,已知正方形ABCD的边长为1,过正方形中心O 的直线MN分别交
正方形的边AB,CD于点M,N,则当取最小值时,CN= ▲
已知椭圆的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得,则该离心率e的取值范围是 ▲