(本小题满分10分)
已知四棱锥P—ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点。
(I)求AC与PB所成角的余弦值;
(II)求面AMC与面BMC所成二面角的余弦值的大小。
(选修4—5:不等式选讲)
设x是正数,求证:
(选修4—4:坐标系与参数方程)
已知两个圆的极坐标方程分别是,求这两个圆的圆心距。
(选修4—2:矩阵与变换)
已知矩阵,矩阵M对应的变换把曲线变为曲线C,求曲线C的方程。
(选修4—1:几何证明选讲)
如图,AB是⊙O的直径,C、F为⊙O上的点,且CA平分∠BAF,过点C作CD⊥AF,交AF的延长线于点D。
求证:DC是⊙O的切线。
(本小题满分16分)
对于函数,如果是一个三角形的三边长,那么也是一个三角形的三边长,则称函数为“保三角形函数”.
对于函数,如果是任意的非负实数,都有是一个三角形的三边长,则称函数为“恒三角形函数”.
(Ⅰ)判断三个函数“(定义域均为)”中,哪些是“保三角形函数”?请说明理由;
(Ⅱ)若函数是“恒三角形函数”,试求实数的取值范围;
(Ⅲ)如果函数是定义在上的周期函数,且值域也为,试证明:既不是“恒三角形函数”,也不是“保三角形函数”.