(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本小题满分13分)
已知抛物线:的焦点为,过点作直线交抛物线于、两点;椭圆的中心在原点,焦点在轴上,点是它的一个顶点,且其离心率.
(1)求椭圆的方程;
(2)经过、两点分别作抛物线的切线、,切线与相交于点.证明:;
(3) 椭圆上是否存在一点,经过点作抛物线的两条切线、(、为切点),使得直线过点?若存在,求出抛物线与切线、所围成图形的面积;若不存在,试说明理由.
执行下面框图所描述的算法程序,记输出的一列数依次为,,…,,,.
(1)若输入,写出输出结果;
(2)若输入,求数列的通项公式;
(3)若输入,令,求常数(),使得是等比数列.
(本小题满分12分)
一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中,,,.
(1)求证:;
(2)求二面角的平面角的大小.
(本小题满分12分)
为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是本市雷电天气高峰期,在31天中平均发生雷电14.57天如图.如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.
(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);
(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为,求的数学期望和方差.
已知向量向量,
(1)化简的解析式,并求函数的单调递减区间;
(2)在△ABC中,分别是角A,B,C的对边,已知的面积为,求.