已知为非零的平面向量,甲:,乙:,则甲是乙的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
已知函数的最小正周期为,则该函数的图象( )
A.关于点对称 B.关于直线对称
C.关于点对称 D.关于直线对称
的共轭复数是 ( )
A.- B. C. D.
设集合M={m∈Z|-3<m<2},N={n∈N|-1<n≤3},则M∩N=( )
A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2}
(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本小题满分13分)
已知抛物线:的焦点为,过点作直线交抛物线于、两点;椭圆的中心在原点,焦点在轴上,点是它的一个顶点,且其离心率.
(1)求椭圆的方程;
(2)经过、两点分别作抛物线的切线、,切线与相交于点.证明:;
(3) 椭圆上是否存在一点,经过点作抛物线的两条切线、(、为切点),使得直线过点?若存在,求出抛物线与切线、所围成图形的面积;若不存在,试说明理由.