(本小题满分15分)
已知函数。
(I)求函数的单调区间;Ks*5*u
(II)若恒成立,试确定实数k的取值范围;
(III)证明:.
本小题满分15分)
已知,
,的图像与轴交于点,且在该点处切线的斜率为.
(I)若点,点是函数图像上一点,是的中点,当,时,求的值;Ks*5*u
(II)当时,试问:是否存在曲线与的公切线?并证明你的结论.
(本小题满分14分)
某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第个月的当月利润率,例如:.
(I)求第个月的当月利润率的表达式;
(II)该企业经销此产品期间,哪一个月的当月利润率最大,并求该月的当月利润率.
(本小题满分14分)Ks*5*u
已知定义域为的函数是奇函数.
(I)求的值;
(II)若对任意的,不等式恒成立,求的取值范围.
(本小题满分14分)Ks*5*u
在△ABC中,角A,B,C所对边分别为a,b,c,且.
(I)求角A;
(II)若m,n,试求|mn|的最小值.
已知函数上连续不断,定义:,
,其中,表示函数在上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数为上的“阶收缩函数” .
已知函数为[-1,4]上的“阶收缩函数”,则的取值范围是 .