已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn=,证明:( n∈N﹡).
如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.又已知该双曲线的离心率.
(1)求证:,,依次成等差数列;
(2)若F(,0),求直线AB在双曲线上所截得的弦CD的长度.
已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.
如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC.
(1)求证:E为PC的中点;
(2)求二面角A-BD-E的大小.
某工厂2010年第三季度生产的A,B,C,D四种型号的产品产量用条形图形表示如图,现用分层抽样的方法从中选取50件样品参加2011年4月份的一个展销会。
(1)A,B,C,D型号的产品各抽取多少件?
(2)从50件样品随机地抽取2件,求这2件产品恰好是不同型号产品的概率。
(3)从A,C型号的样品中随机地抽取3件,用ξ表示抽取A型号的产品件数,求ξ的分布列和数学期望
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列
(1)求角B及边b的最大值;
(2)设△ABC的面积为S,求S+最大值