(本小题满分13分)
如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
.(本小题满分13分)
将3封不同的信投进A、B、C、D这4个不同的信箱、假设每封信投入每个信箱的可能性相等.
(Ⅰ)求这3封信分别被投进3个信箱的概率;
(Ⅱ)求恰有2个信箱没有信的概率;
(Ⅲ)求A信箱中的信封数量的分布列和数学期望.
.(本小题满分13分)
已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为.
(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时f(x)的值域.
.连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB、CD的长度分别为2和4,M、N分别是AB、CD的中点,两条弦的两端都在球面上运动,有下面四个命题:
①弦AB、CD可能相交于点M;
②弦AB、CD可能相交于点N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正确命题的序号为 .
以双曲线-=1的离心率为半径,以右焦点为圆心的圆与该双曲线的渐近线相切,则m= .
设函数y=2sin(2x+)的图象关于点P(x0,0)成中心对称,若x0∈[-,0],则x0= .