y = x -ln(1+x) 的单调增区间是 ( )
A .(-1 ,0 ) B. ( -1 ,+) C. (0 ,+ ) D. (1 ,+ )
数列{}满足[( 2 n – 1 )] = 2,则( n)= ( )
A. B . C. 1 D.不存在
用数学归纳法证明等式:时,当n=1时的左边等于( )
A.4 B.3 C.2 D.1
(本小题满分14分)
已知数列{an}中,a1=t(t∈R,且t≠0,1),a2=t2,且当x=t时,
函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2,n∈N)取得极值.
(Ⅰ)求证:数列{an+1-an}是等比数列;
(Ⅱ)若bn=anln|an|(n∈N),求数列{bn}的前n项和Sn;
(Ⅲ)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
(本小题满分13分)
设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R)当x=-1时,f(x)取得极大值,且函数y=f(x+1)的图象关于点(-1,0)对称.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-,]上;
(Ⅲ)设xn=,ym=(m,n∈N),求证:|f(xn)-f(ym)|<.