(本小题满分12分)
2011年1月,某校就如何落实“湖南省教育厅《关于停止普通高中学校组织三年级学生节假日补课的通知》”,举办了一次座谈会,共邀请50名代表参加,他们分别是家长20人,学生15人,教师15人.
(1)从这50名代表中随机选出2名首先发言,问这2人是教师的概率是多少?
(2)从这50名代表中随机选出3名谈假期安排,若选出3名代表是学生或家长,求恰有1人是家长的概率是多少?
(3)若随机选出的2名代表是学生或家长,求其中是家长的人数为ξ的分布列和数学期望.
(本小题满分12分)
设△ABC的内角A,B,C所对的边长分别为a,b,c,m=(cosA,cosC),n=(c-2b,a)且m⊥n.
(1)求角A的大小;
(2)若角B=,BC边上的中线AM的长为,求△ABC的面积.
已知函数f(x)=(x2-x-)eax(a≠0).
(1)曲线y=f(x)在点A(0,f(0))处的切线方程为 ;
(2)当a>0时,若不等式f(x)+≥0对x∈[-,+∞)恒成立,则实数a的取值范围为 .
已知f(x)是定义在R上的奇函数,且f(x+2)+f(x)=0,当x∈[0,1]时,f(x)=2x-1,则f(log125)= .
在平面直角坐标系xOy中,设D是由不等式组表示的区域,E是到原点的距离不大于1的点构成的区域,向E中随机投一点,则所投点落在D中的概率是 .
.一个几何体的三视图如下图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.则用 个这样的几何体可以拼成一个棱长为4的正方体.