(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.
(I)求曲线的直角坐标方程;
(II)设直线与曲线相交于,两点,求M,N两点间的距离
(本小题满分10分)选修4—1:几何证明选讲
如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点(
G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H .求证:
(I)C,D,F,E四点共圆;
(II)GH2=GE·GF.
(本小题满分12分)
已知函数
(1)若函数在定义域内单调递增,求的取值范围;
(2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围;
(3)设各项为正的数列满足:求证:
(本小题满分12分)
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于.的点,,圆的直径为9.
(I)求证:平面平面;
(II)求二面角的平面角的正切值.
(本小题满分12分)
已知函数f(x)=x-ln(x+a).(a是常数)
(I)求函数f(x)的单调区间;
(II) 当在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,求实数b的取值范围;
(III)求证:当时.
(本小题满分12分)
如图,在三棱锥中,,,,,, 点,分别在棱上,且,
(I)求证:平面;
(II)当为的中点时,求与平面所成的角的大小;
(III)是否存在点使得二面角为直二面角?并说明理由.