(坐标系与参数方程选做题)
已知圆的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,则直线与圆的交点的直角坐标为 .
(几何证明选讲选做题) 如图,在中, ,,,以点为圆心,线段的长为半径的半圆交所在直线于点、,交线段于点,则线段的长为 .
给出可行域 ,在可行域内任取一点,则点满足的概率是 .
已知命题,.若命题是假命题,则实数的取值范围是 .(用区间表示)
已知,则 .
将正方形分割成个全等的小正方形(图1,图2分别给出了的情形),在每个小正方形的顶点各放置一个数,使位于正方形的四边及平行于某边的任一直线上的数都分别依次成等差数列,若顶点处的四个数互不相同且和为1,记所有顶点上的数之和为,则
A.4 B.6 C. .