(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;
(本小题満分12分) 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1) 求双曲线C的方程;
(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
(本小题満分12分)
已知一条曲线上的每个点M到A(1,0)的距离减去它到y轴的距离差都是1.
(1)求曲线的方程;
(2)讨论直线y=kx+1 (k∈R)与曲线的公共点个数
(本小题満分12分) 设p :指数函数在R上是减函数;q:。若p∨q是真命题,p∧q是假命题,求的取值范围。
(本题满分10分)如果正△ABC中,D∈AB,E∈AC,向量,求以B,C为焦点且过点D,E的双曲线的离心
已知向量,且A、B、C三点共线,
则k=