先后随机投掷2枚正方体骰子,其中表示第枚骰子出现的点数,表示第枚骰子出现的点数。设点P的坐标为。
(1)求点在直线上的概率;
(2)求点满足的概率
已知函数
(I)求函数的最小正周期。
(II) 求函数的最大值及取最大值时x的集合
已知是首项为19,公差为-2的等差数列,为的前项和.
(Ⅰ)求通项及;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
已知函数满足:,,则=______
(本小题満分12分) 如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;