((本小题共14分)
已知椭圆.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
(本小题共13分)
已知函数。
(Ⅰ)求的单调区间;
(Ⅱ)若对于任意的,都有≤,求的取值范围。
本小题共13分
以下茎叶图记录了甲、乙两组各四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。
(注:方差,其中为,,…… 的平均数)
(本小题共14分)
如图,在四棱锥中,平面,底面是菱形,.
(Ⅰ)求证:平面
(Ⅱ)若求与所成角的余弦值;
(Ⅲ)当平面与平面垂直时,求的长.
(本小题共13分)
已知函数。
(Ⅰ)求的最小正周期:
(Ⅱ)求在区间上的最大值和最小值。
曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数 a2 (a >1)的点的轨迹.给出下列三个结论:
① 曲线C过坐标原点;
② 曲线C关于坐标原点对称;
③若点P在曲线C上,则△FPF的面积大于a。
其中,所有正确结论的序号是 。