(本题满分15分)
已知圆A:与x轴负半轴交于B点,过B的弦BE与y轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆.
(1)求椭圆的方程;
(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值.
(本题满分15分)
已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M、N两点.
(1).求实数k的取值范围
(2).求证:为定值
(3).若O为坐标原点,且=12,求直线l的方程
(本题满分14分)
如图, ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.
(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.
(本题满分14分)
已知两个命题r(x):sinx+cosx>m;s(x):x2+mx+1>0.如果对于任意实数x,r(x)s(x) 为假,r(x)s(x)为真,求实数m的取值范围。
已知,设在R上单调递减,的定义域为R,如果“或”为真命题,“或”也为真命题,则实数的取值范围是______▲___.
椭圆中,以点M(-1,2)为中点的弦所在的直线斜率为 ▲