(本小题满分12分)
在直角坐标系中,点P到两定点,的距离之和等于4,设点P的轨迹为,过点的直线C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)设d为A、B两点间的距离,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
(本小题满分12分)
设F是抛物线G:的焦点,过F且与抛物线G的对称轴垂直的直线被抛物线G截得的线段长为4.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设A、B为抛物线G上异于原点的两点,且满足FA⊥FB,延长AF、BF分别交抛物线G于点C、D,求四边形ABCD面积的最小值.
(本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.
(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.
.(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.
(本小题满分12分)
设,求直线AD与平面的夹角。
(本小题满分10分)
已知命题若是的充分不必要条件,求的取值范围