((本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示和的函数关系式(写出函数定义域);
(2)怎样设计能使取得最大值,最大值为多少?
((本小题满分12分)
已知几何体的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线与所成角的余弦值;
(2)二面角的正弦值;
(3)此几何体的体积的大小.
(本小题满分12分)
已知命题:曲线为双曲线;命题:函数在上是增函数;若命题“或”为真,命题“且”为假,求实数的取值范围.
(本小题满分12分)
在中,角、、的对边分别为、、,且满足.
(1)求角的大小;
(2)当时,求的面积.
若数列是正项数列,且则__________________.
过双曲线的一个焦点F作一条渐近线的垂线,若垂足恰在线段(为原点)的垂直平分线上,则双曲线的离心率为_______ ___.