(本小题满分12分)
设函数.
(Ⅰ)请在下列直角坐标系中画出函数的图象;
(Ⅱ)根据(Ⅰ)的图象,试分别写出关于的方程有2,3,4个实数解时,相应的实数的取值范围;
(Ⅲ)记函数的定义域为,若存在,使成立,则称点为函数图象上的不动点.试问,函数图象上是否存在不动点,若存在,求出不动点的坐标,若不存在,请说明理由.
(本小题满分12分)
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ) 当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)设每辆车的月租金为元(),则能租出多少辆车?当为何值时,租赁公司的月收益最大?最大月收益是多少?
(本小题满分12分)
对于函数:
(Ⅰ) 是否存在实数使函数为奇函数?
(Ⅱ) 探究函数的单调性(不用证明),并求出函数的值域.
((本小题满分12分)
设集合,,.
求(Ⅰ); (Ⅱ); (Ⅲ)
本小题满分12分)
(Ⅰ) 已知,化简;
(Ⅱ) 已知,,试用表示.
若对于区间内的任意一个自变量, 其对应的函数值都属于区间,则称函数在区间上封闭.那么,对于区间,下列函数中在区间上封闭的是
(填写所有符合要求的函数式所对应的序号)
① ; ② ; ③ ;
④ ; ⑤