用系统抽样法从名学生中抽取容量为的样本,将名学生从~编号,按编号顺序平均分成组(~号,~号,,~号)。若第组应抽出的号码为,则第一组中用抽签方法确定的号码是()
A. B. C. D.
若双曲线的焦距为, 则的值等于( )
A. B. C. D.
若,则成立的一个充分不必要条件是( )
A. B. C. D.
(本小题满分14分)
现有甲、乙两个盒子,甲盒中装有4个白球和4个红球,乙盒中装有3个白球和若干个红球,若从乙盒中任取两个球,取到同色球的概率是.
(1)求乙盒中红球的个数;
(2)从甲、乙两个盒子中各任取两个球进行交换,若交换后乙盒子中的白球数和红球数相等,就说这次交换是成功的,试求交换成功的概率。
(3)若从甲盒中任取两个球,放入乙盒中均匀后,再从乙盒中任意取出2个球放回到甲盒中,求甲盒中白球没有增加的概率;
(本小题满分13分)
已知m,n表示先后抛掷一个骰子所得到正面向上的点数,方程C:
(1)求共可以组成多少个不同的方程C;
(2)求能组成落在区域且焦点在X轴的椭圆的概率;
(3)在已知方程C为落在区域且焦点在X轴的椭圆的情况下,求离心率为的概率
(本题满分14分)
已知椭圆,A(2,0)为椭圆与X轴的一个交点,过原点O的直线交椭圆于B、C两点,且,
(1) 求此椭圆的方程;
(2) 若P(x,y)为椭圆上的点且P的横坐标X≠±1,试判断是否为定值?若是定值,求出该定值;若不是定值,请说明理由。