已知等比数列的公比为正数,且·=2,=1,则= ( )
A. B. C. D.2
“”是“”的 ( )
A. 必要不充分条件 B. 充分不必要条件
C.充分必要条件 D. 既不充分也不必要条件
(本小题14分)
已知,函数,
(Ⅰ)当=2时,写出函数的单调递增区间;
(Ⅱ)当>2时,求函数在区间上的最小值;
(Ⅲ)设,函数在上既有最大值又有最小值,请分别求出的取值范围(用表示)
(本小题14分)
已知直线L被两平行直线:与:所截线段AB的中点恰在直线上,已知圆.
(Ⅰ)求两平行直线与的距离;
(Ⅱ)证明直线L与圆C恒有两个交点;
(Ⅲ)求直线L被圆C截得的弦长最小时的方程.
(本小题13分)
某公司要将一批不易存放的蔬菜从A地运到B 地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:
运输工具 |
途中速度 (km/h) |
途中费用 (元/km) |
装卸时间 (h) |
装卸费用 (元) |
汽车 |
50 |
8 |
2 |
1000 |
火车 |
100 |
4 |
4 |
2000 |
若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B 两地距离为km
(I)设采用汽车与火车运输的总费用分别为与,求与;
(II)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).
(注:总费用=途中费用+装卸费用+损耗费用)
(本小题13分)
在正方体ABCD—A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.
求证:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.